
 

Abstract— This article proposes a new combinatorial path 

planning method for Unmanned Aerial  Vehicle (UAV) for 

agricultural monitoring using multi-objective optimisation 

approach. The purpose of the algorithm is to optimise two 

conflicting objectives in UAV operation, path length and 

coverage lost (CL). The method is constructed based on three 

planners namely Route Planner (RP), Path Planner (PP) and 

Coverage Planner (CP). The algorithm in each planner is 

developed using a modified version of Genetic Algorithm (GA) 

and Dijkstra Algorithm (A*) respectively. The solution for 

routeing problem is based on the problem of Travelling 

Salesman Problem (TSP) and obstacles avoidance. A new 

method of genetic mutation is proposed to improve the 

premature convergence as well as minimising the crossing path 

in the routeing process. A distance approximation function is 

used if the original trajectory is not optimised due to the 

obstacles. In addition, coverage estimation is proposed to 

evaluate the coverage loss within the search boundary R. From 

the result, the combined algorithm have produced different 

candidate solutions as the value of R varies hence, provide the 

operator the best potential solution.  

 
Keywords— Agricultural Monitoring, Genetic Algorithm, Multi 

-Objective Path planning, Unmanned Aerial vehicles. 

I. INTRODUCTION 

Due to the increasing demand and stringent requirement in 

agricultural products,  an effective monitoring is required [2]. 

The biggest drawback of the ordinary method using ground 

vehicles is due to limited manueverity particularly in 

hard-to-reach areas as compared to aerial monitoring using 

UAV [1]. The use of UAV in agricultural sector such as crop 

monitoring, seed spreading and water spaying have proven to 

increase the productivity [3]. However, such activities require a 

proper path planning to ensure the UAV operates as desired.  

A general problem of UAV path-planning is to determine 

how far the trajectory of the aircraft fulfils the user’s 

requirement. Several path planning algorithms for UAVs have 

been proposed such as A* searching algorithm [4], Voronoi 

diagram[5], Dynamic Programming [6], the Rapidly-exploring 

Random Tree (RRT)[7] and so on. In addition to the standard 

single-objective path planning, several multi-objective path 

planning algorithms have also been proposed in [8], [9]. 
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However, the papers do not emphasis the coverage in 

agricultural context. Recently, Ahmed [10] proposed a path 

planning that optimises the turning curve of the UAV trajectory 

to reduce the distance as well as the cost but coverage was not 

considered. 

The reason why the coverage path planning is important is 

that, the agricultural practice in Malaysia (e.g., Palm oil, paddy 

field, corn field) are planted at different stage at different 

section of lands. Ordinary method using the method shown in 

Fig.1 below is no longer appropriate as it may not optimise the 

distance.  

 

Finish

Start

Coverage spots  
Fig.1: Standard agricultural layout and survey route using 

Boustrophedon method. 

Fig.1 shows a standard agricultural layout using 

Boustrophedon method [11]. It literally means, writing of 

alternate lines in opposite directions (as from left to right and 

from right to left). Despite full coverage, this method is forced 

the trajectory to visit all the areas although the areas are not 

planted. Therefore, a more efficient method is proposed to 

reduce the coverage redundancies as illustrated in Fig.2. In 

addition, a method of obstacle’s avoidance is also proposed. 

Start/

Finish

Obstacle 

Coverage spots 

 
Fig.2: A route using path planning using a modified Travelling 

Salesman Problem. 

 

 Fig.2 consists of several coverage areas and few obstacles 

that closely represents the nature of the unstructured plantation. 

In this scenario, the UAV has to visit every spot and return to 

the finish point after all the spots are visited. The solution 

resembles the optimisation of a Travelling Salesman Problem 

(TSP)[12] with collision-free paths to guarantee the safety of 
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the operations. As far as the optimisation is concerned, the 

route should minimize the flying distance and maximise the 

ground coverage. It seems that these objectives are in conflict 

thus, they cannot be solved individually. Therefore, 

multi-objective optimisation is used to find the solution that 

compromises between the objectives.  

II. ALGORITHM STRUCTURE 

In this study, the path-planning algorithm is split into three 

separate modules namely Route Planner (RP), Path Planner 

(PP) and Coverage Planner (CP). A simple block diagram that 

represents each module is depicted in Fig.3 below. 

 

 

Fig 3: A structure of path-planning algorithm 
 

Fig.3 illustrates the structure of path planning algorithm. 

Note that, the input to the module contains a set of essential 

parameters e.g., the locations of the coverage spots including 

start and finish points and the position of the obstacles using 

Global Positioning System (GPS). Based on these inputs, the 

algorithm generates the feasible paths at the output. Detail of 

the individual planner is described in Section III. 

III. ROUTING PROBLEM 

This section presents a method used in every planner and the 

integration between RP and PP. RP is a module that strategizes 

the complete routeing using the strategy of TSP. Ideally, the 

solution is routed via straight-line paths. In the event of 

collision, PP will seek for collision-free paths between the 

respective checkpoints. A series of scenarios in Fig. 4 illustrates 

how the  original TSP route changed after avoiding obstacles. 

In general, fig.4 contains four different scenarios of how 

the path-planning algorithm progress as the position of 

obstacles change. Let C0/Cf be the start and final checkpoint 

and C1 - C7 be the set of checkpoints that the UAV must 

visit/monitor during the operation. The algorithm in RP uses a 

modified version of Genetic Algorithm (GA) proposed in [13] 

to fulfil the TSP rules. According to Fig.4(a), the initial solution 

is in the following sequence,                                       

      (C0,C1,C2,C3,C4,C5,C6,C7 and C f
) 

Without the obstacles, this sequence is considered as optimal 

route. However, when O1 and O2 are introduced as in Fig.4(b), 

the path between C1 and C2 is collided with the obstacles. With 

the help of PP, the optimal path between C1 and C2 is literally 

found through a tiny passage between the obstacles.  

 

 

      
 

 
Fig.4: (a) A standard TSP route,  (b) A path avoids two 

obstacles with a narrow passage between C1 and C2, (c) A path 

ovoids obstacle between C1 and C2, (d) A new route that avoid 

obstacles  in (c). 

A slightly different scenario is devised in Fig.4(c) where 

the obstacles O1 and O2 are overlapping, hence no through 

passage in between. Therefore, the PP would find the avoiding 

path either through the top or the bottom of the obstacles. Since 

the bottom path is shorter, it navigate through the bottom path. 

As the algorithm navigates along its trajectory to C2, 
approximately at point d, the algorithm sees C4 closer than C2 

hence, C4 becomes a priority point over C2. In this situation, the 

PP will update RP so that the original path in Fig.4(a) can be 

re-optimised to a new sequence, 

(C0,C1,C4,C2,C3,C5,C6,C7 and C f
) as shown in fig.4(d). 

This process is progressively optimised according to the 

position of the obstacles until the route is optimised and no 

collision. 

IV. ROUTING ALGORITHM 

As mentioned earlier, RP solves the TSP using GA due 

to the robustness-and-easy to implement. In GA’s context, the 

checkpoints represents the genes of the chromosome. Each 

chromosome represents a return trip of TSP journey from 

starting point to the finishing point. The total genes within the 

chromosome depends on the number of checkpoints. A general 

rule is that, the ellele of the gene must only be swapped 

between genes to prevent duplicate checkpoint within the same 

chromosome. This property must be adhered to ensure the route 

visits every checkpoint once and only once. 

Let’s consider the nine-checkpoint example in Fig.5.  

 
Fig. 5:  An example of nine-checkpoint scenario. 
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Let C0 or 1 be the fixed starting and final checkpoint, then a 

chromosome can be formed from the remaining checkpoints in 

random order, in this case the sequence is 1-2-3-4-5-6-7-8-9-1. 

From this chromosome, only the middle genes are subject to 

evolve since checkpoint 1 is fixed.  

Basically, a chromosome contains a sequence of paths that 

connects between checkpoints (genes). As to avoid missing or 

duplicate checkpoints, the ellele must not duplicate within the 

same chromosome. Every evolved chromosome is evaluated 

using distance functions and converge estimation. In this study, 

the chromosome is selected randomly and evolved using single 

parent. From there, a new child is born using single point 

crossover. The mutation is done through swapping, flipping 

and shifting on two genes using two random insertion points 

within the chromosome. From this process, a new offspring that 

has higher fitness is created and selected as an elitist for further 

evaluation. This process continue until no better candidate is 

found.  

In general, the design of the algorithm solves the 

generalisation of the Hamiltonian circuit in graph forms where, 

each execution is computed using the function in Eq. (1.0).    

      f (x) = min dist(xi ,xi+1)+ dist(xn, x0 )
i=1

n

å (1.0)  

 

Where, i=1,2,3,… n is the order in the chromosome , n is the 

maximum number of checkpoints.  

 

RP is used to optimise the route using TSP, the PP 

determines the best avoiding path within the route if the path 

collides with obstacles. The PP adapts the concept of Dijkstra's 

algorithm [4] or known as A* (A-star). Despite the simplicity of 

A*, it is compatible with the grid-based spaces. Each 

coresponding cell in grid-based is define as vertex, Vi, where 

i=1,2,3,…n and  n is a total available cells within the space. The 

cell that belong to free space is defined as Vfree Î Vi and the 

obstacle’s cell is defined as Vobs Î Vi. Literally, a 

feasible-and-collision-free path is found between Vi and the 

next vertex Vi '  provided Vi ' ÎVfree
.
 

The decision about selecting the successor’s state Vi '  is 

determined by its corresponding cost function. The function 

contains a set of rules that enable the transition. Let’s consider a 

simple state transition diagram that represents a discrete path 

planning as shown in Fig.6. 

 

 
Fig.6: A simple state transition diagram. 

Basically, the diagram in Fig.6 has four states/vertices labelled 

with V0,V1,V2,Vg ÎV (where V0 
is an initial state and Vg is a goal 

state). A transition between two vertices is governed by its 

corresponding cost functions f1, f2, f3, f4 Î. A formal definition 

of such transition is given by the following 5-tuple

(V,S,d ,V0,Vg ), where; 

• V is a finite set of states (vertices), 

•  a finite set of function, 

•  is the transition function, that isd :V ´S®V  

• V0 s the initial state, where,V0 V, 

• Vg is a set of goal state, Vg V. 

A complete transition between V0 and Vg has to either 

pass through V1 only or alternatively through V1 and V2. A 

transition from  V0 and V1 is taken place when f1 is satisfied such 

that : V0 x f1V1.  A transition from V1 to Vg has two possible 

paths, one of which has to satisfy f2 such that :V1 x f2Vg, 

alternatively it must satisfy f3 and f4 such that :(V1 x 

f3V2)(f4Vg). Supposing that, V0 is an initial vertex, Vg is a 

destination vertex and V1 and V2 
are neighbouring vertices. A 

transition, for example, between V0 and V1 is occurred when it 

satisfies f1. A generic transition of the distance-based search is 

computed using Eq. (2.0) below, 

    

fd (dist) = min dist
i=1

n

å (Vd (i-1)Vd i ) (2.0)  

 

Where i=1,2,3,…,n, n=8 represent the number of 

neighbouring states, whereas =1,2,…,m, where m is a 

maximum number of states before reaching Vg. The dist is an 

Euclidean distance between two vertices given by Eq. (2.1),
           

                         
dist = Vi-1

2 +Vi
2 (2.1) 

                  
 

Adding a heuristic function to it speed ups the search as the 

current vertex is evaluated towards Vg. In this basis, a 

two-terms heuristic cost function is added into Eq.(2.0) as 

formalised in Eq. (2.2) and Eq. (2.3). A vertex V at 

neighbouring i must satisfy its corresponding function f(dist).   

                  

fd (distheuristic ) = min distheuristic
i=1

n

å [(V0,Vdi ) + (Vdi,Vg )] (2.2)  

 

Where,               

         
distheuristic =Gd +Hd = V0

2 +Vdi

2 + Vdi

2 +Vg
2     

and  

      
Hd (Vdi,Vg) £ Hd (V0,Vg)+Gd (V0,Vdi ) (2.3)

 
 

By now, RP and PP are able to optimise the TSP route with 

collision free paths. In addition, CP is used to estimate the 

coverage if the coverage spot is covered by the obstacles (e.g., 

cloud, big trees). A sample work on path planning coverage 

estimation in agricultural field can be found in [14]. In this 

approach, CP is used to evaluate the closest point to the 

checkpoint centre or the coverage center. The selection of the 

point not only consider the coverage, but also the distance 

towards the next point as illustrated in Fig.7.  
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(a) 

 
(b 

Fig.7: (a) A scenario where Pi is not accessible via original path due to 

obstacle O2 (aerial view). An alternative path is found via an adjacent 

point Padj, (b) A scenario of coverage loss due to avoiding O2
. 

Fig.7(a) shows that, the access to point Pi is restricted due to 

obstacle O2. Therefore, CP is used to find the adjacent point  

Padj so that it able to connect Pi-1 and Pi+1. In this instance, the 

coverage is taken from Padj instead and that causes the loss in 

coverage as illustrated in Fig.7(b). The farther the Padj from Pi 

the larger the losses will be. Literally, the distance of Padj
 
to Pi 

determines the amount of coverage loss. As to limit the 

coverage loss, the position of Padj must be governed by a 

specific radius R. Therefore, the criterion for selecting Padj is 

important to minimise the losses. We estimate the coverage loss 

(CL) in term of the percentage between the obtainable coverage 

versus the targeted coverage. The estimation is formulated is in 

Eq. (3.0) below,   

  

              

                     

CL(%)=
Ctarget - Closs

Ctarget

X 100% (3.0)
 

Where,  

 

     
Closs =Ctarget -Ceffective

  and  Ceffective = Ctarget Ç Cattainable
 

           
 

Let Ctarget be the desired coverage area (red circle), and the 

Cattainable be the attainable coverage area (blue circle). Then, the 

effective coverage area, Ceffective is the intersecting area 

(shaded) as shown in Fig.8, 

From Fig.8, pR2 = Ctarget
 and pr2 =Cattainable

 respectively. 

Therefore, Ceffective can be expressed in Eq. (3.1), 

 

Ceffective =Ctarget(R,d1)+Cattainable(r,d2 )

 

= r2 cos-1 d 2 + r2 - R2

2dr

æ

èç
ö

ø÷
+ R2 cos-1 d 2 + R2 - r2

2dR

æ

èç
ö

ø÷
...

-
1

2
(-d + r + R)(d + r - R)(d - r + R)(d + r + R) (3.1)

 

    

(0,0)! (d,0)!

d!

x!

=d1!

d-x!

=d2!

r=R2!R=R1!

 
Fig.8: The circle with radius R1 represents Ctarget and the circle with 

radius R2 represents Cattainable
. 

In the case of two identical circle, R = R1 = r = R2 = d, thus, 

d1 = d2 = d / 2  and d represent the distance between Padj and Pi. If 

the position of Padj within the area of coverage region R1, the 

Eq. (3.2) can be simplified as, 

 

        
Ceffective = 2R2 cos-1 d

2R

æ

èç
ö

ø÷
-

1

2
d 4R2 - d2 (3.2)

                  

      

Assuming R=2, then substitute R into Eq. (3.2) yields 

Ceffective = 4.91 and Cdesired =12.5 respectively. Substitute these 

values into Eq. (3.0) yields CL%= 60.7%. That implies the 

effective coverage is only 39.3%. So, in this example, as long as  

Padj resides within the radius R1 or d  1/2 R1, the CL%  would 

be less than 60.7%. That means, a smaller d (distance between 

Padj and Pi) would enlarge the effective coverage area thereby 

minimise the CL. On the other hand, if Padj is not found within 

the set value of R, the search will expand outside the boudary. 

This would cause the point to move away from Pi , thereby 

CL% would increase. Fig.9 illustrates how the CP finds the Padj 

within the specific radius. 

 
Fig.9: The illustation of a search area to locate the best adjacent point 

Padj within the boundary R. 
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 Since the function of CL depends very much on the distance 

of d, the position of Padj that optimises the CL and the path 

length is given by,
   

          
Padj = min(a)+ min(b)+ min(d) d £ R (3.3)  

 

Where a, b and d are the relative Euclidean distances given by,  
   
         a = dist(P1,Padj ),b = dist(Padj ,P3),d = dist(P2,Padj )  

Thus,  

               

Padj = min ai +
i=1

m

å bi + di (3.4)

 

 

Where, Padji ÎS , i=1,2,3,…,m where, m is a total possible 

accessible point in S within R.

 

For path length optimisation, 

parameter d in Eq. (3.4) has no specific condition as long as Padj 

keeps the distance at minimal between two points. However, to 

improve the coverage, d has to be as small as possible.

 
V. RESULT 

The simulation has been divided into two stages. Stage one,  

The algorithm consist only RP and PP to optimise the route and 

avoid obstacles. As such a scenario of 50 random checkpoints is 

created with all checkpoints scattered outside the obstacle 

region (red dots) defined as Scenario1. The aim of this 

simulation is to solve the problem described in Fig.4. The 

simulation has been configured to run within two-dimensional  

search space containing 50 x 50 cells, the escalation in height is 

not considered. The simulation result for Scenario1 is presented 

in Fig.10 below. 
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Fig.10: A standard TSP route using RP only (Scenario 1). 

 

Fig.10 shows that, the route starts from P0 and returned 

to P0 as a complete return journey. At this stage, RP produces 

point-to-point paths with some collided paths particularly, the 

paths between P1 and P2 and P8 and P9. When PP get the 

information of the collision path, those conflicting path would 

be rerouted become collision-free paths as observed in Fig. 11.  
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Fig. 11: A modified TSP solution generated by RP and PP (Scenario1). 

It is noticed that, the solution generated by RP and PP not only 

free from collision, but also improve the overall route. A visual 

comparison between TSP  and the improved route can be 

observed in Fig.8 below.  
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 Fig.12: A comparison between the solutions obtained from RP(dotted 

line)  and combine RP and PP(solid line) in Scenario 1. 

As observed in Fig.12, the path that previously connected 

between P4 and P5 were rerouted to P43, P44, P45, P46, P47 

and P48. This happens because, the path that avoids the 

obstacle between P4 and P5 found that along its way, P46 

appears nearer than P5. Thus, the complete sequence is now 

changed to P4 through P46-P47-P48-P44-P43-P45 and finally 

reached P5. Essentially, this solution resembles the problem in 

Fig.4(c) and fig.4(d). 

 To summarize, the results here showed that, the interaction 

between RP and PP will optimise the routing provided the 

checkpoints are located within the free space. If the checkpoints 

reside within the obstacle vicinity, RP and PP may not be able 

to access it. Hence, CP is needed to make sure the placement of 

an alternative point is  at the optimised location. 
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 To illustrate the problem, another scenario is created with  50 

random checkpoints, but this time, some checkpoints were 

located within the obstacles regions define as Scenario2. The 

result of Scenario2 using RP,PP and CP is shown in Fig.9.  It is 

observed that, P5, P11, P23, P24, P25, P33, P40, P41, P47 and 

P48 are located within the obstacle’s region. 
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Fig.13: A routeing solution using RP only (Scenario2). 

  

Fig.13 shows a routeing solution using RP with some 

checkpoints located within the obstacle’s vicinity. Due to 

obstacles, these checkpoints are not accessible by PP. 

Therefore, CP is needed to search for and alternative point so 

that new alternative checkpoint can be passed to PP for 

rerouteing. As a result, the solution is then rerouted via P5p, 

P23p, P24p and P25p as shown in Fig.14. Similar case are 

observed at P33, P40, P41, P47 and P48 that are replaced by 

P33p, P40p, P41p, P47p and P48p respectively. This method 

was extended from the work in [15].  
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Fig.14: A new route is generated using RP, PP and CP (Scenario 2). 
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Fig.15: A comparison between the solutions obtained from RP (dotted 

line)  and the combine algorithm (solid line) in Scenario 2. 

 

As a matter of comparison, Fig.15 shows the result from RP 

versus the combined algorithm. Note that, the combined 

algorithm consists of RP, PP and CP that optimised the route 

distance as well as coverage. RP optimises the route based upon 

the optimal distance between previous point and the current 

point. It is observed that, between P5 and P11 where the path 

was originally connected along P6, P7, P8, P10 and P11 

eventually rerouted along P10, P9, P8, P7, P6 and P11. 

Therefore, this solution not only avoid the obstacle, but also 

optimises the coverage progressively at once.  

VI. MULTI-OBJECTIVE RESULT 

After the optimisation process, a decision about which path 

is the optimal become a critical subject as the objectives are 

conflicting. Usually, this problem does not produce a single 

solution. Therefore, a set of compromised solutions have been 

generated by gradually increasing the value of radius R. Each 

value of R would produce different set of solution. It is 

observed that, if the value of R is relaxed, the value of CL% will 

increase (poor coverage). On the other hand the path length will 

be decreased. Since both objectives are compromised as R 

varied from 0 to 60ft. The score for both path length and CL can 

be visualised in Fig.16.  
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Fig.16: A trade-off between coverage loss and distance optimisation in 

Scenario2. 
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 Fig.16 shows hundreds of solutions for different value of R 

for each conflicting checkpoint. It is observed that, most of the 

solutions are dense towards the Pareto line due to minimisation 

effect of both objective due to R. This chart will provide the 

useful information about the outcome of each solution. If for 

example, the operator prefers to choose low CL% irrespective 

of the path length, the solution can be found within Zone 4. 

Whereas, if shorter path length is preferred, the solutions can be 

found within Zone 1. A simple weighted-sum method [16] will 

provide the guideline to the operator the potential solution if the 

weightage of each objective is known. In general, the Pareto 

front within Zone 2 and Zone 3 are also known as 

non-dominated solutions and these solution is considered as the 

optimal trade-off solution.  

VII. CONCLUSION 

From the result, the combination of three planners generated 

a set of routes that compromises between two objectives, and 

based on that, the operator has the right to choose the solution 

that  fulfills their need. Thus, it would be beneficial for the 

operators or farmers to choose the most profitable route for 

their farming survey activities prior to actual operation. Future 

work will be focusing on many objective's optimisation that 

will include other objectives such as mission time, fuel 

consumption, risk analysis and so on. 
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