




A. Anaerobic Treatment of Poultry Wastewater 

    The anaerobic treatment process is a technique which is 

widely used in the treatment of high strength poultry wastewater 

[25]. There are advantages that come with the use of anaerobic 

treatment processes which range from low electricity costs, high 

throughput of biogas, less sludge generation, and high organic 

matter removal [26]. An evaluation of the performance of an 

up-flow anaerobic filter (AF) was used in the treatment of 

wastewater. The study reported a COD and BOD removal 

efficiency of 81% and 87% with a 15 days period [27]. In 

another study of the treatment of PSW effluent by using an 

anaerobic UASB with a hydraulic retention time (HRT) of 1 

day, removal efficiencies of up to COD of 70%, BOD of 73%, 

and FOG of 35% were obtained respectively [28]. Yousefi [29] 

conducted a study of treatment of PSW effluent by using a 

combined anaerobic system of 3 pilot-scale anaerobic baffled 

reactors (ABR) in the first stage, followed by 3 anaerobic filters 

(AF). An evaluation of the ABR reactor used in the latter study 

showed a COD removal efficiency of 83% after an HRT of 18 

hours, and the AF reactor showed a removal efficiency of 63%, 

respectively. These previous studies show a low removal 

efficiency and moreover, there is a need to develop a new 

process which would elevate removal efficiency of the stated 

parameters. Finally, the reactors of the 3 pilot-scale were not 

fitted with a heat inducing device which would regulate the 

temperature inside the anaerobic treatment reactors. In some 

cases it would be wise to explore the effect of heat has on an 

anaerobic treatment used in the treatment of poultry wastewater.   

B. Activated Sludge Processes  

    Activated sludge (AS) process methods utilizes a 

combination of aeration and a biological floc composed of 

bacteria and protozoa. The AS process uses aerobic 

micro-organisms that can degrade pollutants and agglomerate 

them by flocculation [30]. A study of an evaluation of the 

activated process (AS) used in the treatment of PSW effluent by 

kinetic model simulation [31], the AS reactor at 26
0
C yielded a 

COD removal efficiency of 93.5% up to 97.2% respectively. 

Carvalho [32] evaluated the role of the AS system in the 

removal of pollutants present in the PSW effluent. The results 

indicated that sorption to sludge and wastewater organic matter 

was responsible for the removal of drug pollutants. The study of 

AS reactor with 100 µg/L initial drug pollutants present in the 

PSW effluent yielded removal rates of up to 68% enrofloxacin 

(ENR) and 77% tetracycline (TET). The latter study results are 

not impressive as one would expect them to be, there was no 

information on the dosage of AS. Going forward, there would 

be a need to study the effect of dosage of AS on the treatment of 

PSW effluent.   

V. TYPES OF BIO-REACTORS 

   There are a wide variety of anaerobic digesters which operate 

in different ways depending on the design specifications and 

material construction of each digester. Anaerobic digesters are 

divided into three basic categories, namely; passive systems, 

low rate systems and high rate system. In addition to the three 

categories listed in the latter, there is also an up-flow anaerobic 

sludge blanket (UASB), static granular bed reactor (SGBR), 

and expanded granular sludge bed reactors (EGSB). In the 

UASB the influent enters the digester from the bottom toward 

the top in an upward flow direction passing a sludge granule 

blanket which filters and treats the wastewater as it flows 

through it [33]. The SGBR is a new reactor which has no 

mixing, but rather utilizes an anaerobic biofilter coupled with 

granules [34]. Lastly, the EGSB is similar to the UASB reactor 

with a high recycle ratio of the effluent stream to the influent 

feed stream [35]. 

 

 
Fig. 2. Biological treatment: Suspended growth (A) & Attached 

growth processes (B). 
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1) Up-flow Anaerobic Sludge Blanket (UASB) 

   In the up-flow anaerobic sludge blanket (UASB) process, the 

wastewater enters at the bottom of the reactor and flows upward. 

There are micro-organisms in the sludge layer that degrade 

organic matter present in the PSW effluent. In one study, an 

evaluation of the performance and stability of a PSW treatment 

plant which utilized the UASB reactor with organic loading 

rates of 1.6±0.4 kg COD/m3 day and velocities of 0.3±0.1 m/h 

was done. The results showed a total chemical oxygen demand 

(TCOD) and soluble chemical oxygen demand (SCOD) of up to 

67% and 85% [36]. 

2) Expanded Granular Sludge Bed (EGSB) 

   The expanded granular sludge bed (EGSB) reactor is an 

adaptation of the UASB reactor with a distinguishing 

recirculation stream of the outlet effluent to the feed influent 
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[37]. EGSB reactors utilize a fully or partially expanded bed 

granules of sludge where the wastewater gets to be treated as it 

passes through. The recirculation stream promotes bed 

fluidization of the granular sludge and like-wise there are 

micro-organisms present in the sludge which degenerate 

organic matter. The performance of a rapid start-up of the 

EGSB reactor by using brewery wastewater as a sludge in the 

treatment of wastewater was conducted [38]. The results of the 

study depicted that the sludge could develop faster within a 

period of 10 days in the EGSB reactor with little detached 

granules. Removal efficiencies of up to 72.9% of COD with a 

hydraulic retention time (HRT) of 12.1 hrs. 

3) Static Granular Bed Reactor (SGBR) 

   The static granular bed reactor (SGBR) is a reactor which has 

no mixing mechanism but rather it has a down-flow system 

which is fitted with static granules and sludge that serve as a 

biodegrading medium. The SGBR reactor has a wide range of 

advantages which include the simplicity of operation and the 

production of high quality effluent [39].  A study of the SGBR 

was employed in the treatment of PSW effluent with an 

intention of evaluating two processes using anaerobic 

non-granular and granular biomass [40]. The study showed that 

both processes were highly efficient in the removal of COD with 

values above 95%. Research treatment of wastewater by using a 

pilot SGBR reactor with organic loading rates between 0.63 to 

9.72 kg/m3/d and a hydraulic retention time (HRT) of 9 to 48 

hrs was performed. In the latter study removal efficiencies of 

COD, BOD5 above 90% and a TSS above 80% was achieved 

respectively [41]. Moreover, in another study of a SGBR fitted 

with pea gravel coupled with activated sludge from brewery 

proved a COD removal efficiency above 90% with a HRT range 

of 5 to 36 hrs [42]. 

VII. MATERIALS AND SYSTEM DESIGN 

 
Fig. 3. Process schematic diagram of poultry slaughterhouse 

wastewater treatment (pilot plant). 

 

    The pilot plant is designed of the following specifications; 25 

L mixing pre-treatment tank, clear PVC (SGBR) reactor of 5 L, 

and 5 L/hrs peristaltic pump operating at 10 Bar max. PSW 

influent is fed in the pre-treatment tank is treated with bacteria 

grown and isolated poultry effluent ponds. However, the PSW 

effluent product from the pre-treatment is fed in the subsequent 

stage of SGBR for further processing. The SGBR reactor is 

fitted with granules and the effluent is treated using activated 

sludge obtained from brewery.  Analysis of influent and effluent 

samples before and after the pre-treatment stage and the SGBR 

bioreactor are performed in order to evaluate removal efficiency 

of COD, BOD, FOG, TSS, and pH. The reduction of the amount 

of FOG in the pre-treatment stage and as well as the reduction of 

COD in the effluent discharged by the SGBR determine the 

pilot plant performance. Lastly, an evaluation of how inoculated 

biological enzymes influence the degradation of poultry 

slaughterhouse wastewater is performed. The current set up of 

the pilot plant has been opted for against other processes 

because it eco-friendly, electricity costs is low, and it generates 

by products such as methane gas and carbon-dioxide. 

VIII. MOTIVATION FOR REACTOR SELECTION 

   An effect of enzymatic pre-treatment by using pancreatic 

lipase proved to reduce pork fat present in wastewater; however, 

the effect enzymatic pre-treatment was never tested under 

anaerobic conditions [8]. In the latter study it showed that there 

is a remaining challenge that stems from evaluation of enzymes 

under anaerobic conditions. Additionally, it is worth noting that 

most of current designs of pre-treatment process lack a solids 

removal points and screens which are fitted at the bottom of the 

tank. It remains to be seen whether the use of a solids removal 

point would or would not disturb enzymatic activity after the 

pretreatment step. Generally, the screens serve a purpose of 

FOG & other large particle removal when placed under vacuum 

suction. Lastly, it would be interesting to evaluate how the 

inoculated biological enzymes, isolated from PSW ponds, 

influence the degradation of poultry slaughterhouse wastewater. 

The current set up of the pilot plant has been opted for against 

other processes because it is fitted with a solids removal point, it 

is also fitted with screens at the bottom, it is eco-friendly, 

electricity costs are low, and it would permit a collection of by 

products such as methane gas and carbon-dioxide. Anaerobic 

bacteria gets survival from the food or nutrients (solids) instead 

of oxygen, and in most cases the process is advantageous in that 

it produces a reduced volume of sludge, high organic matter 

removal and high methane gas production it as well [43]. The 

methane gas produced from the process, if collected, can be 

used as a source of energy which can make it economically 

viable. Effluent discharged from PSW factories can also be 

treated cheaply and more effectively when employing the above 

pilot plant set up. 

IX. CONCLUSION 

   The efficiency of poultry slaughterhouse wastewater 

treatment is dependent on the set-up and design of process. The 

presented reviewed studies of different wastewater treatment 

processes show a diminishing removal efficiency. There is a 

need of the research to be conducted because of its novelty of 

employing, in the pre-treatment step, bacterium strains obtained 

from poultry ponds. Furthermore, the process of biological 

pre-treatment coupled with the use of SGBR inoculated with 

activated sludge is highly recommended.  
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